Goal
The goal I want to achieve is to
- read a CSV file (OK)
- encode it to
Dataset<Person>
, wherePerson
object has a nested objectAddress[]
. (Throws an exception)
The Person CSV file
In a file called person.csv
, there is the following data describing some persons:
name,age,address
"name1",10,"streetA~cityA||streetB~cityB"
"name2",20,"streetA~cityA||streetB~cityB"
The first line is the schema and address is a nested structure.
Data classes
The data classes are:
@Data
public class Address implements Serializable {
public String street;
public String city;
}
and
@Data
public class Person implements Serializable {
public String name;
public Integer age;
public Address[] address;
}
Reading untyped Data
I have tried first to read the data from the CSV in a Dataset<Row>
, which works as expected:
Dataset<Row> ds = spark.read() //
.format("csv") //
.option("header", "true") // first line has headers
.load("src/test/resources/outer/person.csv");
LOG.info("=============== Print schema =============");
ds.printSchema();
root
|-- name: string (nullable = true)
|-- age: string (nullable = true)
|-- address: string (nullable = true)
LOG.info("================ Print data ==============");
ds.show();
+-----+---+--------------------+
| name|age| address|
+-----+---+--------------------+
|name1| 10|streetA~cityA||st|
|name2| 20|streetA~cityA||st|
+-----+---+--------------------+
LOG.info("================ Print name ==============");
ds.select("name").show();
+-----+
| name|
+-----+
|name1|
|name2|
+-----+
assertThat(ds.isEmpty(), is(false)); //OK
assertThat(ds.count(), is(2L)); //OK
final List<String> names = ds.select("name").as(Encoders.STRING()).collectAsList();
assertThat(names, hasItems("name1", "name2")); //OK
Encoding through a UserDefinedFunction
My udf that take a String
and return an Address[]
:
private static void registerAsAddress(SparkSession spark) {
spark.udf().register("asAddress", new UDF1<String, Address[]>() {
@Override
public Address[] call(String rowValue) {
return Arrays.stream(rowValue.split(Pattern.quote("||"), -1)) //
.map(object -> object.split("~")) //
.map(Address::fromArgs) //
.map(a -> a.orElse(null)) //
.toArray(Address[]::new);
}
}, //
DataTypes.createArrayType(DataTypes.createStructType(
new StructField[]{new StructField("street", DataTypes.StringType, true, Metadata.empty()), //
new StructField("city", DataTypes.StringType, true, Metadata.empty()) //
})));
}
The caller:
@Test
void asAddressTest() throws URISyntaxException {
registerAsAddress(spark);
// given, when
Dataset<Row> ds = spark.read() //
.format("csv") //
.option("header", "true") // first line has headers
.load("src/test/resources/outer/person.csv");
ds.show();
// create a typed dataset
Encoder<Person> personEncoder = Encoders.bean(Person.class);
Dataset<Person> typed = ds.withColumn("address2", //
callUDF("asAddress", ds.col("address")))
.drop("address").withColumnRenamed("address2", "address")
.as(personEncoder);
LOG.info("Typed Address");
typed.show();
typed.printSchema();
}
Which leads to this execption:
Caused by: java.lang.IllegalArgumentException: The value (Address(street=streetA, city=cityA)) of the type (ch.project.data.Address) cannot be converted to struct
Why it cannot convert from Address
to Struct
?
Advertisement
Answer
After trying a lot of different ways and spending some hours researching over the Internet, I have the following conclusions:
UserDefinedFunction
is good but are from the old world, it can be replaced by a simple map()
function where we need to transform object from one type to another.
The simplest way is the following
SparkSession spark = SparkSession.builder().appName("CSV to Dataset").master("local").getOrCreate();
Encoder<FileFormat> fileFormatEncoder = Encoders.bean(FileFormat.class);
Dataset<FileFormat> rawFile = spark.read() //
.format("csv") //
.option("inferSchema", "true") //
.option("header", "true") // first line has headers
.load("src/test/resources/encoding-tests/persons.csv") //
.as(fileFormatEncoder);
LOG.info("=============== Print schema =============");
rawFile.printSchema();
LOG.info("================ Print data ==============");
rawFile.show();
LOG.info("================ Print name ==============");
rawFile.select("name").show();
// when
final SerializableFunction<String, List<Address>> asAddress = (String text) -> Arrays
.stream(text.split(Pattern.quote("||"), -1)) //
.map(object -> object.split("~")) //
.map(Address::fromArgs) //
.map(a -> a.orElse(null)).collect(Collectors.toList());
final MapFunction<FileFormat, Person> personMapper = (MapFunction<FileFormat, Person>) row -> new Person(row.name,
row.age,
asAddress
.apply(row.address));
final Encoder<Person> personEncoder = Encoders.bean(Person.class);
Dataset<Person> persons = rawFile.map(personMapper, personEncoder);
persons.show();
// then
assertThat(persons.isEmpty(), is(false));
assertThat(persons.count(), is(2L));
final List<String> names = persons.select("name").as(Encoders.STRING()).collectAsList();
assertThat(names, hasItems("name1", "name2"));
final List<Integer> ages = persons.select("age").as(Encoders.INT()).collectAsList();
assertThat(ages, hasItems(10, 20));
final Encoder<Address> addressEncoder = Encoders.bean(Address.class);
final MapFunction<Person, Address> firstAddressMapper = (MapFunction<Person, Address>) person -> person.addresses.get(0);
final List<Address> addresses = persons.map(firstAddressMapper, addressEncoder).collectAsList();
assertThat(addresses, hasItems(new Address("streetA", "cityA"), new Address("streetC", "cityC")));