If I have a list/Seq of columns in Scala like:
val partitionsColumns = "p1,p2"
val partitionsColumnsList = partitionsColumns.split(",").toList
I can easily use it in partitionBy or groupBy like
val windowFunction = Window.partitionBy(partitionsColumnsList:_*)
.orderBy(df("some_date").desc)
But if I want to do the same thing in Spark Java API what should I do?
List<String> partitions = new ArrayList<>();
partitions.add("p1");
partitions.add("p2");
WindowSpec windowSpec = Window.partitionBy(.....)
.orderBy(desc("some_date"));
Advertisement
Answer
partitionBy has two signatures:
partitionBy(Seq<Column> cols) partitionBy(String colName, Seq<String> colNames)
So you may choose between one of the two. Let’s say that partitions is a list of String. It would go like this:
import scala.collection.JavaConversions;
import scala.collection.Seq;
List<Column> columns = partitions.stream()
.map(functions::col)
.collect(Collectors.toList());
Seq<Column> columnSeq = JavaConversions.asScalaBuffer(columns).toSeq();
WindowSpec windowSpec = Window.partitionBy(columnSeq);
// OR
Seq<String> columnSeq2 = JavaConversions.asScalaBuffer(partitions).toSeq();
WindowSpec windowSpec = Window
.partitionBy(partitions.get(0), columnSeq2.tail().toSeq());