# Store Binary Data in QR Code (ZXING Java Library)

My Java program needs to send a binary payload via QR Code, but I can’t get it to work. I have tried several QR Code libraries and many approaches, but all seem to have this problem. My current implementation uses ZXING.

The problem is that all the Java libraries I’ve tried seem to be focused on String payloads, and do not provide support for binary data. The common suggested solution to this is to encode the binary data as Base64. However, my data is already near the size limit of QR Codes. With the 4x inflation caused by Base64 encoding, my data is far too big. I have already expended significant effort into reducing the size of the payload, and it currently consists of 4 character hashes delimited by new lines; all inside max level compression by the Java Deflator class. I can’t make it any smaller.

I need a way to store binary data in a QR code with minimal data inflation overhead.

Update: I recently went back and published the referenced code as a project on GitHub for anyone who wants to use it. https://github.com/yurelle/Base45Encoder

I developed a solution which only introduces a storage efficiency loss of -8%. It exploits a built-in compression optimization of the ZXING QR Code Library.

Explanation

ZXING will automatically detect if your String payload is purely AlphaNumeric (by their own definition), and if so, it will automatically compress 2 AlphaNumeric characters into 11 bits. The definition ZXING uses for “alphanumeric” is all-caps only, 0-9, and a few special symbols (‘/’, ‘:’, etc.). All told, their definition allows 45 possible values. Then, it packs 2 of these Base45 digits into 11 bits.

2 digits in base 45 is 2,025 possible values. 11 bits has a maximum storage capacity of 2,048 possible states. This is only a loss of 1.1% in storage efficiency behind raw binary.

```  45 ^ 2 = 2,025
2 ^ 11 = 2,048
2,048 - 2,025 = 23
23 / 2,048 = 0.01123046875 = 1.123%
```

However, this is the ideal / theoretical efficiency. My implementation processes data in chunks, using a Long as a computational buffer. However, since Java Long’s are singed, we can only use the lower 7 bytes. The conversion code requires continuously positive values; using the highest 8th byte would contaminate the sign bit and randomly produce negative values.

Real-World Test:

Using a 7 byte Long to encode a 2KB buffer of random bytes, we get the following results.

```  Raw Binary Size:        2,048
Encoded String Size:    3,218
QR Code Alphanum Size:  2,213 (after the QR Code compresses 2 base45 digits to 11 bits)
```

This is a real-world storage efficiency loss of only 8%.

```  2,213 - 2,048 = 165
165 / 2,048 = 0.08056640625 = 8.0566%
```

Solution

I implemented it as a self-contained static utility class, so all you have to do is call:

```//Encode
final byte[] myBinaryData = ...;

//Decode
```

Alternatively, you can also do it via InputStreams:

```//Encode
final InputStream in_1 = ... ;

//Decode
final InputStream in_2 = ... ;
```

Here’s the implementation

```import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.lang.reflect.Field;
import java.util.HashMap;
import java.util.Map;

/**
* For some reason none of the Java QR Code libraries support binary payloads. At least, none that
* I could find anyway. The commonly suggested workaround for this is to use Base64 encoding.
* limit of QR codes, this is not possible.
*
* This class implements an encoder which takes advantage of a built-in compression optimization
* of the ZXING QR Code library, to enable the storage of Binary data into a QR Code, with a
* storage efficiency loss of only -8%.
*
* The built-in optimization is this: ZXING will automatically detect if your String payload is
* purely AlphaNumeric (by their own definition), and if so, it will automatically compress 2
* AlphaNumeric characters into 11 bits.
*
*
* ----------------------
*
*
* The included ALPHANUMERIC_TABLE is the conversion table used by the ZXING library as a reverse
* index for determining if a given input data should be classified as alphanumeric.
*
* See:
*
*
* which scans through the input string one character at a time and passes them to:
*
*      getAlphanumericCode(int code)
*
* in the same class, which uses that character as a numeric index into the the
* ALPHANUMERIC_TABLE.
*
* If you examine the values, you'll notice that it ignores / disqualifies certain values, and
* effectively converts the input into base 45 (0 -> 44; -1 is interpreted by the calling code
* to mean a failure). This is confirmed in the function:
*
*      appendAlphanumericBytes(CharSequence content, BitArray bits)
*
* where they pack 2 of these base 45 digits into 11 bits. This presents us with an opportunity.
* If we can take our data, and convert it into a compatible base 45 alphanumeric representation,
* then the QR Encoder will automatically pack that data into sub-byte chunks.
*
* 2 digits in base 45 is 2,025 possible values. 11 bits has a maximum storage capacity of 2,048
* possible states. This is only a loss of 1.1% in storage efficiency behind raw binary.
*
*      45 ^ 2 = 2,025
*      2 ^ 11 = 2,048
*      2,048 - 2,025 = 23
*      23 / 2,048 = 0.01123046875 = 1.123%
*
* However, this is the ideal / theoretical efficiency. This implementation processes data in
* chunks, using a Long as a computational buffer. However, since Java Long's are singed, we
* can only use the lower 7 bytes. The conversion code requires continuously positive values;
* using the highest 8th byte would contaminate the sign bit and randomly produce negative
* values.
*
*
* Real-World Test:
*
* Using a 7 byte Long to encode a 2KB buffer of random bytes, we get the following results.
*
*      Raw Binary Size:        2,048
*      Encoded String Size:    3,218
*      QR Code Alphanum Size:  2,213 (after the QR Code compresses 2 base45 digits to 11 bits)
*
* This is a real-world storage efficiency loss of only 8%.
*
*      2,213 - 2,048 = 165
*      165 / 2,048 = 0.08056640625 = 8.0566%
*/
public class BinaryToBase45Encoder {
public final static int[] ALPHANUMERIC_TABLE;

/*
* You could probably just copy & paste the array literal from the ZXING source code; it's only
* an array definition. But I was unsure of the licensing issues with posting it on the internet,
* so I did it this way.
*/
static {
final Field SOURCE_ALPHANUMERIC_TABLE;
int[] tmp;

//Copy lookup table from ZXING Encoder class
try {
SOURCE_ALPHANUMERIC_TABLE.setAccessible(true);
tmp = (int[]) SOURCE_ALPHANUMERIC_TABLE.get(null);
} catch (NoSuchFieldException e) {
e.printStackTrace();//Shouldn't happen
tmp = null;
} catch (IllegalAccessException e) {
e.printStackTrace();//Shouldn't happen
tmp = null;
}

//Store
ALPHANUMERIC_TABLE = tmp;
}

public static final int NUM_DISTINCT_ALPHANUM_VALUES = 45;
public static final char[] alphaNumReverseIndex = new char[NUM_DISTINCT_ALPHANUM_VALUES];

static {
//Build AlphaNum Index
final int len = ALPHANUMERIC_TABLE.length;
for (int x = 0; x < len; x++) {
// The base45 result which the alphanum lookup table produces.
// i.e. the base45 digit value which String characters are
// converted into.
//
// We use this value to build a reverse lookup table to find
// the String character we have to send to the encoder, to
// make it produce the given base45 digit value.
final int base45DigitValue = ALPHANUMERIC_TABLE[x];

//Ignore the -1 records
if (base45DigitValue > -1) {
//The index into the lookup table which produces the given base45 digit value.
//
//i.e. to produce a base45 digit with the numeric value in base45DigitValue, we need
//to send the Encoder a String character with the numeric value in x.
alphaNumReverseIndex[base45DigitValue] = (char) x;
}
}
}

/*
* The storage capacity of one digit in the number system; i.e. the maximum
* possible number of distinct values which can be stored in 1 logical digit
*/
public static final int QR_PAYLOAD_NUMERIC_BASE = NUM_DISTINCT_ALPHANUM_VALUES;

/*
* We can't use all 8 bytes, because the Long is signed, and the conversion math
* requires consistently positive values. If we populated all 8 bytes, then the
* last byte has the potential to contaminate the sign bit, and break the
* conversion math. So, we only use the lower 7 bytes, and avoid this problem.
*/
public static final int LONG_USABLE_BYTES = Long.BYTES - 1;

//The following mapping was determined by brute-forcing -1 Long (all bits 1), and compressing to base45 until it hit zero.
public static final int[] BINARY_TO_BASE45_DIGIT_COUNT_CONVERSION = new int[] {0,2,3,5,6,8,9,11,12};
public static final int NUM_BASE45_DIGITS_PER_LONG = BINARY_TO_BASE45_DIGIT_COUNT_CONVERSION[LONG_USABLE_BYTES];
public static final Map<Integer, Integer> BASE45_TO_BINARY_DIGIT_COUNT_CONVERSION = new HashMap<>();

static {
//Build Reverse Lookup
int len = BINARY_TO_BASE45_DIGIT_COUNT_CONVERSION.length;
for (int x=0; x<len; x++) {
int numB45Digits = BINARY_TO_BASE45_DIGIT_COUNT_CONVERSION[x];
BASE45_TO_BINARY_DIGIT_COUNT_CONVERSION.put(numB45Digits, x);
}
}

public static String encodeToBase45QrPayload(final byte[] inputData) throws IOException {
}

public static String encodeToBase45QrPayload(final InputStream in) throws IOException {
//Init conversion state vars
final StringBuilder strOut = new StringBuilder();
int data;
long buf = 0;

// Process all input data in chunks of size LONG.BYTES, this allows for economies of scale
// so we can process more digits of arbitrary size before we hit the wall of the binary
// chunk size in a power of 2, and have to transmit a sub-optimal chunk of the "crumbs"
// left over; i.e. the slack space between where the multiples of QR_PAYLOAD_NUMERIC_BASE
// and the powers of 2 don't quite line up.
while(in.available() > 0) {
//Fill buffer
int numBytesStored = 0;
while (numBytesStored < LONG_USABLE_BYTES && in.available() > 0) {

//Push byte into buffer
buf = (buf << 8) | data; //8 bits per byte

//Increment
numBytesStored++;
}

//Write out in lower base
final StringBuilder outputChunkBuffer = new StringBuilder();
final int numBase45Digits = BINARY_TO_BASE45_DIGIT_COUNT_CONVERSION[numBytesStored];
int numB45DigitsProcessed = 0;
while(numB45DigitsProcessed < numBase45Digits) {
//Chunk out a digit
final byte digit = (byte) (buf % QR_PAYLOAD_NUMERIC_BASE);

//Drop digit data from buffer

//Write Digit
outputChunkBuffer.append(alphaNumReverseIndex[(int) digit]);

//Track output digits
numB45DigitsProcessed++;
}

/*
* The way this code works, the processing output results in a First-In-Last-Out digit
* reversal. So, we need to buffer the chunk output, and feed it to the OutputStream
* backwards to correct this.
*
* We could probably get away with writing the bytes out in inverted order, and then
* flipping them back on the decode side, but just to be safe, I'm always keeping
* them in the proper order.
*/
strOut.append(outputChunkBuffer.reverse().toString());
}

//Return
return strOut.toString();
}

public static byte[] decodeBase45QrPayload(final String inputStr) throws IOException {
//Prep for InputStream
final byte[] buf = inputStr.getBytes();//Use the default encoding (the same encoding that the 'char' primitive uses)

}

public static byte[] decodeBase45QrPayload(final InputStream in) throws IOException {
//Init conversion state vars
final ByteArrayOutputStream out = new ByteArrayOutputStream();
int data;
long buf = 0;
int x=0;

// Process all input data in chunks of size LONG.BYTES, this allows for economies of scale
// so we can process more digits of arbitrary size before we hit the wall of the binary
// chunk size in a power of 2, and have to transmit a sub-optimal chunk of the "crumbs"
// left over; i.e. the slack space between where the multiples of QR_PAYLOAD_NUMERIC_BASE
// and the powers of 2 don't quite line up.
while(in.available() > 0) {
//Convert & Fill Buffer
int numB45Digits = 0;
while (numB45Digits < NUM_BASE45_DIGITS_PER_LONG && in.available() > 0) {

//Translate back through lookup table
int digit = ALPHANUMERIC_TABLE[(int) c];

//Shift buffer up one digit to make room

//Append next digit
buf += digit;

//Increment
numB45Digits++;
}

//Write out in higher base
final int numBytes = BASE45_TO_BINARY_DIGIT_COUNT_CONVERSION.get(numB45Digits);
int numBytesProcessed = 0;
while(numBytesProcessed < numBytes) {
//Chunk out 1 byte
final byte chunk = (byte) buf;

//Shift buffer to next byte
buf = buf >> 8; //8 bits per byte

//Write byte to output
//
//Again, we need to invert the order of the bytes, so as we chunk them off, push
//them onto a FILO stack; inverting their order.
outputChunkBuffer.push(chunk);

//Increment
numBytesProcessed++;
}

//Write chunk buffer to output stream (in reverse order)
while (outputChunkBuffer.size() > 0) {
out.write(outputChunkBuffer.pop());
}
}

//Return
out.flush();
out.close();
return out.toByteArray();
}
}
```

Here are some tests I ran to verify the code:

```@Test
public void stringEncodingTest() throws IOException {
//Init test data
final String testStr = "Some cool input data! !@#\$%^&*()_+";

//Encode

//Decode
final String decodedStr = new String(decodedBytes, "UTF-8");

//Output
final boolean matches = testStr.equals(decodedStr);
assert(matches);
System.out.println("They match!");
}

@Test
public void binaryEncodingAccuracyTest() throws IOException {
//Init test data
final int maxBytes = 10_000;
for (int x=1; x<=maxBytes; x++) {
System.out.print("x: " + x + "t");

//Encode
final byte[] inputArray = getTestBytes(x);

//Decode

//Output
for (int y=0; y<x; y++) {
assertEquals(inputArray[y], decodedBytes[y]);
}
System.out.println("Passed!");
}
}

@Test
public void binaryEncodingEfficiencyTest() throws IOException, WriterException, NoSuchMethodException, InvocationTargetException, IllegalAccessException {
//Init test data
final byte[] inputData = new byte[2048];
new Random().nextBytes(inputData);

//Encode

//Write to QR Code Encoder // Have to use Reflection to force access, since the function is not public.
final BitArray qrCode = new BitArray();
final Method appendAlphanumericBytes = com.google.zxing.qrcode.encoder.Encoder.class.getDeclaredMethod("appendAlphanumericBytes", CharSequence.class, BitArray.class);
appendAlphanumericBytes.setAccessible(true);
appendAlphanumericBytes.invoke(null, encodedStr, qrCode);

//Output
final int origSize = inputData.length;
final int qrSize = qrCode.getSizeInBytes();
System.out.println("Raw Binary Size:tt" + origSize + "nEncoded String Size:t" + encodedStr.length() + "nQR Code Alphanum Size:t" + qrSize);

//Calculate Storage Efficiency Loss
final int delta = origSize - qrSize;
final double efficiency = ((double) delta) / origSize;
System.out.println("Storage Efficiency Loss: " + String.format("%.3f", efficiency * 100) + "%");
}

public static byte[] getTestBytes(int numBytes) {
final Random rand = new Random();
final ByteArrayOutputStream bos = new ByteArrayOutputStream();
for (int x=0; x<numBytes; x++) {
//bos.write(255);// -1 (byte) = 255 (int) = 1111 1111

byte b = (byte) rand.nextInt();
bos.write(b);
}
return bos.toByteArray();
}
```
6 People found this is helpful